3,3-DIALKYL-2-PHOSPHINOYLOXAZIRIDINES: SYNTHESIS AND DETERMINATION OF THE BARRIER TO NITROGEN INVERSION

W. Brian Jennings,* Stephen P. Watson,

Department of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.

and Derek R. Boyd

Department of Chemistry, Queen's University of Belfast, Belfast BT9 5AG, U.K.

<u>Summary</u>: 3,3-Dialkyl-2-diphenylphosphinoyloxaziridines, prepared by the oxidation of N-diphenylphosphinoyl imines with the 3-chloroperoxybenzoic acid-KF complex, have very low barriers to inversion at nitrogen (ΔG^{\ddagger} 12.6-13.3 kcal mol⁻¹).

The preparation and characterization of 2-phosphinoyloxaziridines has recently been described.¹ Thus far these compounds, which show interesting oxidising properties, have been limited to examples of type (1) bearing a 3-aryl group. In this respect the situation was similar to that in 2-sulphonyloxaziridines² which, until recently,³ were largely restricted to 3-aryl substituted compounds. We now report the preparation of 3,3-dialkyl-2-phosphinoyloxaziridines (2) and the first quantitative assessment of the configurational stability at nitrogen in the N-phosphinoyl oxaziridine system.

Although 3-aryl-2-phosphinoyloxaziridines can be prepared by biphasic (3-chloroperoxybenzoic acid/CHCl₃/H₂O/NaHCO₃) oxidation of N-benzylidenephosphonamides,¹ our investigations have found that this procedure is unsatisfactory for the oxidation of the hydrolytically sensitive N-phosphinoyl imines deriving from dialkyl ketones. However, oxidation of these imines with the 2:1 potassium fluoride/3-chloroperoxybenzoic acid (MCPBA) complex devised by Camps <u>et al.</u>⁴ for alkene epoxidation affords 3,3-dialkyl-phosphinoyloxaziridines (2) in good yield. This oxidation regime is performed under anhydrous conditions.

SCHEME 1

TABLE 1

N.m.r. data and barriers to nitrogen inversion for 3,3-dialkyl-2-diphenylphosphinoyloxaziridines.^a

Compd.	δ(C-3) ^b p.p.m.	² J(PNC) ^b Hz	δ(³¹ P) ^b p.p.m.	δ(R ¹) ^C p.p.m.	δ(R ²) ^c p.p.m.	T ^d °C	k s-1	ΔG+ kcal mol-1
(2a)	87.0	6.7	28.7	26.2 ^e	20.5 ^e	18.5	750	13.2 ± 0.1
(2b)	91.5	6,6	27.7	36.1 ^f	30.5 ^f	22.5	937	13.3 ± 0.1
(2c)	89,1	6.6	28.2	32.1(<u>t</u>) ^f ,g	18.3 ^e	3.5	252	13.1 ± 0.1(<u>t→c</u>)g
				22.7(<u>c</u>) ^{e,g}	27.3f		681	12.6 ± 0.1(<u>c→t</u>)g

^a Recorded in deuteriochloroform solution at 67.8 MHz (¹³C) or 36.2 MHz (³¹P) using internal TMS and external H₃PO₄ references. ^b Recorded at ambient temperature. ^c Chemical shift of the 3-alkyl substituents recorded at -40°C where nitrogen inversion is slow on the n.m.r. time-scale; R¹ and R² are <u>trans</u> and <u>cis</u> respectively to the P(0)Ph₂ group. ^d Coalescence temperature. ^e α -Methyl signal. ^f α -Methylene signal. ^g c and <u>t</u> refer to nitrogen invertomers in which the 3-ethyl and 2-phosphinoyl moieties are <u>cis</u> and <u>trans</u> respectively.

<u>N</u>-Phosphinoyl imines (4) were obtained by rearrangement of <u>O</u>-diphenylphosphino-oximes (3) prepared by reaction of equimolar quantities of oxime, chlorodiphenylphosphine and triethylamine at <u>ca</u>. -50°C (Scheme I).⁵ The dichloromethane solution containing the crude imine was filtered under nitrogen onto a rapidly stirred suspension of a 100% excess of the KF/MCPBA complex in dichloromethane. After stirring for <u>ca</u>. 2h, filtration and rotary evaporation afforded the crude oxaziridines. Subsequent trituration with hexane/ether 2:1 and filtration through a 1 cm silica gel bed gave oxaziridines (2a-c) in 55-65% overall yield.

Compounds (2a-c) afforded satisfactory elemental analyses and spectral data in accord with the oxaziridine structure, quaternary ¹³C resonances (which exhibited a coupling to phosphorous) in the region δ 87-92 being particularly characteristic. In addition, oxaziridines (2a-c) displayed ³¹P NMR resonances in the region of δ 28 (Table 1).¹ In contrast to their 2-sulphonyl counterparts, the ambient temperature n.m.r. spectra of oxaziridines (2a-c) indicate a rapidly

Figure 1 67.8 MHz 13 C n.m.r. spectra of (2c) in deuteriochloroform at various temperatures showing the dynamic coalescence of <u>cis</u> (c) and <u>trans</u> (t) isomers

inverting nitrogen atom, for example ¹H and ¹³C n.m.r. spectra of (2a) showed one discrete (exchange broadened) 3-Me resonance. On cooling below 10°C the 3-alkyl resonances of oxaziridines (2a) and (2b) split into two equally intense sets of signals indicative of slow inversion at nitrogen on the NMR time-scale. At -40°C the alkyl signals of the asymmetrically 3,3-disubstituted compound (2c) were split into two components of unequal intensity (Figure 1). On the basis that 3-alkyl α -carbons located <u>trans</u> to an oxaziridine nitrogen lone pair experience an upfield shift,⁶ the major and minor components can be assigned to the nitrogen invertomers in which the 3-ethyl group resides respectively trans and cis to the diphenylphosphinoyl moiety.

Line shape analysis⁷ of the α -carbon signal of (2a-c) at coalescence afforded the rates of nitrogen inversion (Table 1). The barrier to nitrogen inversion in these oxaziridines (12.6-13.3 kcal mol⁻¹) is much lower than that obtaining in 2-sulphonyloxaziridines (20-21 kcal mol⁻¹)^{3,8} and reflects a much stronger conjugative interaction between nitrogen and phosphorus than between nitrogen and sulphur in the trigonal transition state for nitrogen inversion. A similar trend has been observed previously in N-phosphinoyl and N-sulphonyl aziridines,⁹ though the magnitude of the effect is much greater in the oxaziridines. The absence of configurational stability at nitrogen in N-phosphinoyl oxaziridines, as compared with N-alkyl oxaziridines where the inversion barrier is 25-34 kcal mol⁻¹, ^{10,11} has important consequences for stereochemical work involving these compounds.

REFERENCES

- D.R. Boyd, W.B. Jennings, R.M. McGuckin, M. Rutherford and B.M. Saket, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1985, 582; D.R. Boyd, J.F. Malone, M.R. McGuckin, W.B. Jennings, M. Rutherford and B.M. Saket, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 2</u>, 1988, 1145.
- F.A. Davis, J.F. Lamendola, Jr., U. Nadir, E.W. Kluger, T.C. Sedergran, T.W. Panunto, R. Billmers, R. Jenkins, Jr., I.J. Turchi, W.H. Watson, J.S. Chen and M. Kimura, <u>J. Am. Chem.</u> Soc., 1980, <u>102</u>, 2000.
- 3. W.B. Jennings, S.P. Watson and D.R. Boyd, J. Chem. Soc., Chem. Commun., 1988, 931.
- 4. F. Camps, J. Coll, A. Messeguer and F. Pujol, J. Org. Chem., 1982, 47, 5402.
- 5. B. Krzyzanowska and W.J. Stec, Synthesis, 1978, 521; 1982, 270.
- 6. G.J. Jordan and D.R. Crist, Org. Magn. Reson., 1977, 9, 322.
- J. Burdon, J.C. Hotchkiss and W.B. Jennings, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 2</u>, 1976, 1052.
- 8. W.B. Jennings, S.P. Watson and M.S. Tolley, J. Am. Chem. Soc., 1987, 109, 8099.
- F.A.L. Anet, R.D. Trepka and D.J. Cram, <u>J. Am. Chem. Soc.</u>, 1967, <u>89</u>, 357; see also J.B. Lambert, B.S. Packard and W.L. Oliver, Jr., <u>J. Org. Chem.</u>, 1971, <u>36</u>, 1309.
- 10. F. Montanari, I. Moretti and G. Torre, J. Chem. Soc., Chem. Commun., 1969, 1086.
- 11. J. Bjorgo and D.R. Boyd, J. Chem. Soc., Perkin Trans. 2, 1973, 1575.

(Received in UK 14 November 1988)